Luzin π -bases and the foliage hybrid operation

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

<ロト 4 課 ト 4 語 ト 4 語 ト 語 9 9 9 9</p>

Informally: a foliage tree = a tree with a leaf at each node.

Informally: a foliage tree = a tree with a leaf at each node.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Informally: a foliage tree = a tree with a leaf at each node.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Definition

 $\mathbf{F} = \langle \mathcal{T}, \varphi \rangle$ is a foliage tree : \longleftrightarrow

Informally: a foliage tree = a tree with a leaf at each node.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Informally: a foliage tree = a tree with a leaf at each node.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

```
 \mathbf{F} = \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } : \longleftrightarrow 
  \mathcal{T} \text{ is a tree and } \varphi \text{ is a function with } \text{domain}(\varphi) = \mathcal{T}.
```

Informally: a foliage tree = a tree with a leaf at each node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

```
\mathbf{F} = \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } :\longleftrightarrow
\mathcal{T} \text{ is a tree and } \varphi \text{ is a function with domain}(\varphi) = \mathcal{T}.
\circledast \quad \mathcal{T} \text{ is called the skeleton of } \mathbf{F};
```

Informally: a foliage tree = a tree with a leaf at each node.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Definition

 $\mathbf{F} = \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } :\longleftrightarrow$ $\mathcal{T} \text{ is a tree and } \varphi \text{ is a function with domain}(\varphi) = \mathcal{T}.$ $\circledast \quad \mathcal{T} \text{ is called the skeleton of } \mathbf{F};$ $\circledast \quad \varphi(v) \text{ is called the leaf of } \mathbf{F} \text{ at node } v$

Informally: a foliage tree = a tree with a leaf at each node.

Definition

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Informally: a foliage tree = a tree with a leaf at each node.

Definition

 $\mathbf{F} = \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } : \longleftrightarrow$ $\mathcal{T} \text{ is a tree and } \varphi \text{ is a function with domain}(\varphi) = \mathcal{T}.$ $\mathfrak{T} \text{ is called the skeleton of } \mathbf{F};$ $\mathfrak{F}(v) \text{ is called the leaf of } \mathbf{F} \text{ at node } v \text{ (we denote it by } \mathbf{F}_v).$

Recall that the Baire space ${\cal N}$ is ${}^\omega\omega$ with the product topology.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Informally: a foliage tree = a tree with a leaf at each node.

Definition

 $\begin{aligned} \mathbf{F} &= \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } &: \longleftrightarrow \\ \mathcal{T} \text{ is a tree and } \varphi \text{ is a function with domain}(\varphi) &= \mathcal{T}. \\ & & \mathcal{T} \text{ is called the skeleton of } \mathbf{F}; \\ & & & \varphi(v) \text{ is called the leaf of } \mathbf{F} \text{ at node } v \text{ (we denote it by } \mathbf{F}_v). \end{aligned}$

Recall that the Baire space ${\cal N}$ is ${}^\omega\omega$ with the product topology.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Example

Informally: a foliage tree = a tree with a leaf at each node.

Definition

 $\begin{aligned} \mathbf{F} &= \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } &: \longleftrightarrow \\ \mathcal{T} \text{ is a tree and } \varphi \text{ is a function with domain}(\varphi) &= \mathcal{T}. \\ & & \mathcal{T} \text{ is called the skeleton of } \mathbf{F}; \\ & & & \varphi(v) \text{ is called the leaf of } \mathbf{F} \text{ at node } v \text{ (we denote it by } \mathbf{F}_v). \end{aligned}$

Recall that the Baire space ${\cal N}$ is ${}^\omega\omega$ with the product topology.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Example

The standard foliage tree of \mathcal{N} :=

Informally: a foliage tree = a tree with a leaf at each node.

Definition

Recall that the Baire space ${\cal N}$ is ${}^\omega\omega$ with the product topology.

Example

The standard foliage tree of $\mathcal{N}\ \coloneqq\$ a foliage tree \boldsymbol{S} such that

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Informally: a foliage tree = a tree with a leaf at each node.

Definition

 $\begin{aligned} \mathbf{F} &= \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } &: \longleftrightarrow \\ \mathcal{T} \text{ is a tree and } \varphi \text{ is a function with domain}(\varphi) &= \mathcal{T}. \\ & & \mathcal{T} \text{ is called the skeleton of } \mathbf{F}; \\ & & & \varphi(v) \text{ is called the leaf of } \mathbf{F} \text{ at node } v \text{ (we denote it by } \mathbf{F}_v). \end{aligned}$

Recall that the Baire space ${\cal N}$ is ${}^\omega\omega$ with the product topology.

Example

The standard foliage tree of \mathcal{N} := a foliage tree **S** such that \succ skeleton **S** := ${}^{<\omega}\omega$

Informally: a foliage tree = a tree with a leaf at each node.

Definition

 $\begin{aligned} \mathbf{F} &= \langle \mathcal{T}, \varphi \rangle \text{ is a foliage tree } &: \longleftrightarrow \\ \mathcal{T} \text{ is a tree and } \varphi \text{ is a function with domain}(\varphi) &= \mathcal{T}. \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & &$

Recall that the Baire space ${\cal N}$ is ${}^\omega\omega$ with the product topology.

Example

The standard foliage tree of $\mathcal{N}\ \coloneqq\$ a foliage tree \boldsymbol{S} such that

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

> skeleton
$$\mathbf{S} := {}^{<\omega}\omega$$
 and

$$\succ \mathbf{S}_{\mathbf{v}} \coloneqq \{ \mathbf{a} \in {}^{\boldsymbol{\omega}} \boldsymbol{\omega} : \mathbf{a} \text{ begins with } \mathbf{v} \}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Definition

Let **F** be a foliage tree.

Definition

Let **F** be a foliage tree.

```
(1) F is locally strict :\longleftrightarrow
```


Definition

Let **F** be a foliage tree.

```
(1) F is locally strict :\longleftrightarrow
\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.
```


Definition

Let **F** be a foliage tree.

(1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton } \mathbf{F}, \ \mathbf{F}_v = \bigsqcup \{ \mathbf{F}_c : c \in \text{children}(v) \}.$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

(2) **F** has strict branches : \longleftrightarrow

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

(3) **F** is **open** in a space $X : \longleftrightarrow$

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

(3) **F** is **open** in a space $X : \longleftrightarrow$ each **F**_v is an open subset of X.

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.
- (3) **F** is **open** in a space $X : \longleftrightarrow$ each F_v is an open subset of X.
- Solution Sector Secto

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.
- (3) **F** is **open** in a space $X : \longleftrightarrow$ each \mathbf{F}_{v} is an open subset of X.
- Solution State State

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.
- (3) **F** is **open** in a space $X : \longleftrightarrow$ each \mathbf{F}_{v} is an open subset of X.
- Solution Sector Secto

- (1) **F** is locally strict,
- (2) F has strict branches,

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.
- (3) **F** is **open** in a space $X : \longleftrightarrow$ each **F**_v is an open subset of X.
- f is a **Baire foliage tree** on a space $X : \longleftrightarrow$

- (1) **F** is locally strict,
- (2) F has strict branches,
- (3) **F** is open in X,

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.
- (3) **F** is **open** in a space $X : \longleftrightarrow$ each **F**_v is an open subset of X.
- f is a **Baire foliage tree** on a space $X : \longleftrightarrow$

- (1) **F** is locally strict,
- (2) F has strict branches,
- (3) **F** is open in X,
- (4) skeleton $\mathbf{F} \cong {}^{<\omega}\omega$,

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.
- (3) **F** is **open** in a space $X : \longleftrightarrow$ each **F**_v is an open subset of X.
- f is a **Baire foliage tree** on a space $X : \longleftrightarrow$

- (1) **F** is locally strict,
- (2) F has strict branches,
- (3) **F** is open in X,
- (4) skeleton $\mathbf{F} \cong {}^{<\omega}\omega$,

(5)
$$\mathbf{F}_{0_{\mathbf{F}}} = X$$

Definition

Let **F** be a foliage tree.

- (1) **F** is locally strict : \longleftrightarrow $\forall v \in \text{skeleton F}, F_v = \bigsqcup \{F_c : c \in \text{children}(v)\}.$
- (2) **F** has strict branches : \longleftrightarrow for each branch *B* of skeleton **F**, $|\bigcap_{v \in B} \mathbf{F}_v| = 1$.
- (3) **F** is **open** in a space $X : \longleftrightarrow$ each **F**_v is an open subset of X.
- f is a **Baire foliage tree** on a space $X : \longleftrightarrow$
 - (1) **F** is locally strict,
 - (2) F has strict branches,
 - (3) **F** is open in X,
 - (4) skeleton $\mathbf{F} \cong {}^{<\omega}\omega$,
 - (5) $\mathbf{F}_{0_{\mathbf{F}}} = X$ (where $0_{\mathbf{F}} :=$ the least node of skeleton \mathbf{F}).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Example

Example

S is a Baire foliage tree on \mathcal{N} .

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Example

 \boldsymbol{S} is a Baire foliage tree on $\mathcal{N}.$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Lemma

Example

S is a Baire foliage tree on \mathcal{N} .

Lemma

For any space X the following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

S is a Baire foliage tree on \mathcal{N} .

Lemma

For any space X the following are equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

> There is a Baire foliage tree on X.

Example

S is a Baire foliage tree on \mathcal{N} .

Lemma

For any space X the following are equivalent:

- > There is a Baire foliage tree on X.
- > X admits a weaker topology homeomorphic to \mathcal{N} .

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Example

S is a Baire foliage tree on \mathcal{N} .

Lemma

For any space X the following are equivalent:

- > There is a Baire foliage tree on X.
- > X admits a weaker topology homeomorphic to \mathcal{N} .

(ロ)、

SQA

Another Example

Example

S is a Baire foliage tree on \mathcal{N} .

Lemma

For any space X the following are equivalent:

- > There is a Baire foliage tree on X.
- > X admits a weaker topology homeomorphic to \mathcal{N} .

Another Example

There is a Baire foliage tree on the Sorgenfrey line $\mathcal{R}_{\mathcal{S}}$.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Definition

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Let **F** be a foliage tree and $v \in \text{skeleton } \mathbf{F}$.

Definition

Let **F** be a foliage tree and $v \in \text{skeleton } \mathbf{F}$.

Definition

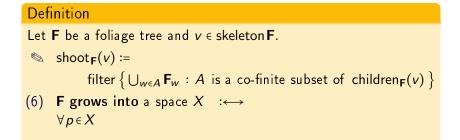
Let **F** be a foliage tree and $v \in \text{skeleton } \mathbf{F}$. $\text{shoot}_{\mathbf{F}}(v) :=$ filter $\{\bigcup_{w \in A} \mathbf{F}_w :$

Definition

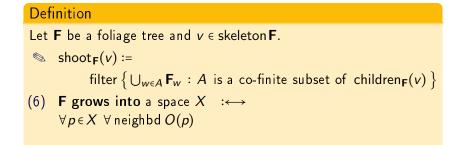
Let **F** be a foliage tree and $v \in \text{skeleton } \mathbf{F}$.

Definition Let **F** be a foliage tree and $v \in \text{skeleton F}$. $\text{ shoot}_{\mathbf{F}}(v) \coloneqq$ filter $\{\bigcup_{w \in A} \mathbf{F}_w : A \text{ is a co-finite subset of children}_{\mathbf{F}}(v)\}$ (6) **F** grows into a space $X :\longleftrightarrow$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

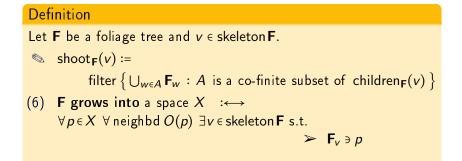


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

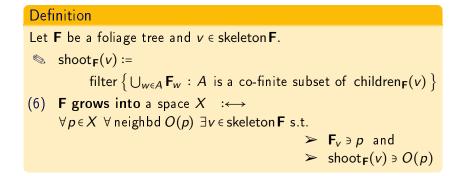


Definition Let **F** be a foliage tree and $v \in \text{skeleton F}$. $\text{ shoot}_{\mathbf{F}}(v) \coloneqq$ filter $\{\bigcup_{w \in A} \mathbf{F}_w : A \text{ is a co-finite subset of children}_{\mathbf{F}}(v)\}$ (6) **F** grows into a space $X : \longleftrightarrow$ $\forall p \in X \forall \text{ neighbd } O(p) \exists v \in \text{skeleton} \mathbf{F} \text{ s.t.}$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへで



・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへで



ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

・ロト (個) (主) (主) (主) (つ) (?)

Definition

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Definition

L is a **Luzin** π -**base** for a space $X : \longleftrightarrow$

Definition

L is a **Luzin** π -base for a space $X : \longleftrightarrow$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

> L is a Baire foliage tree on X

Definition

- **L** is a **Luzin** π -base for a space $X : \longleftrightarrow$
- ➤ L is a Baire foliage tree on X and

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

> L grows into X.

Definition

- **L** is a **Luzin** π -base for a space $X : \longleftrightarrow$
- ➤ L is a Baire foliage tree on X and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

> **L** grows into X.

Examples

Definition

- **L** is a **Luzin** π -base for a space $X : \longleftrightarrow$
- ➤ L is a Baire foliage tree on X and

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

> **L** grows into X.

Examples

 \mathbb{S} is a Luzin π -base for \mathcal{N} .

Definition

- **L** is a **Luzin** π -base for a space $X : \longleftrightarrow$
- ➤ L is a Baire foliage tree on X and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

> L grows into X.

Examples

- \mathbb{S} is a Luzin π -base for \mathcal{N} .
- \mathbb{B} is a Luzin π -base for $\mathcal{R}_{\mathcal{S}}$.

・ロト (個) (主) (主) (主) (つ) (?)

Let LPB := the class of spaces that have a Luzin π -base.

Let LPB := the class of spaces that have a Luzin π -base.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Theorem

Let LPB := the class of spaces that have a Luzin π -base.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Theorem

> For each $X \in LPB$,

Let LPB := the class of spaces that have a Luzin π -base.

Theorem

➤ For each $X \in LPB$,

there is a continuous surjection $f: X \xrightarrow{\text{open}} \mathcal{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let LPB := the class of spaces that have a Luzin π -base.

Theorem

➤ For each $X \in LPB$,

there is a continuous surjection $f: X \xrightarrow{\text{open}} \mathcal{N}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

➤ For each $X \in LPB$,

Let LPB := the class of spaces that have a Luzin π -base.

Theorem

➤ For each $X \in LPB$,

there is a continuous surjection $f: X \xrightarrow{\text{open}} \mathcal{N}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

➤ For each $X \in LPB$,

there is a continuous bijection $g: X \to \mathcal{N}$.

Let LPB := the class of spaces that have a Luzin π -base.

Theorem

> For each $X \in LPB$,

there is a continuous surjection $f: X \xrightarrow{\text{open}} \mathcal{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- > For each $X \in LPB$, there is a continuous bijection $g: X \to \mathcal{N}$.
- Up to homeomorphisms, LPB =

Let LPB := the class of spaces that have a Luzin π -base.

Theorem

> For each $X \in LPB$,

there is a continuous surjection $f: X \xrightarrow{\text{open}} \mathcal{N}$.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

- > For each $X \in LPB$, there is a continuous bijection $g: X \to \mathcal{N}$.
- > Up to homeomorphisms, LPB = { $\langle {}^{\omega}\omega, \tau \rangle$:

Let LPB := the class of spaces that have a Luzin π -base.

Theorem

> For each $X \in LPB$,

there is a continuous surjection $f: X \xrightarrow{\text{open}} \mathcal{N}$.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

- > For each $X \in LPB$, there is a continuous bijection $g: X \to \mathcal{N}$.
- > Up to homeomorphisms, LPB = $\{ \langle {}^{\omega}\omega, \tau \rangle : \tau \supseteq \tau_{\mathcal{N}} \}$

Let LPB := the class of spaces that have a Luzin π -base.

Theorem

> For each $X \in LPB$,

there is a continuous surjection $f: X \xrightarrow{\text{open}} \mathcal{N}$.

> For each $X \in LPB$, there is a continuous bijection $g: X \to \mathcal{N}$.

> Up to homeomorphisms, LPB = { $\langle \omega \omega, \tau \rangle : \tau \supseteq \tau_N$ and **S** grows into $\langle \omega \omega, \tau \rangle$ }.

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

Examples

The following spaces lie in LPB:

> The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

The following spaces lie in LPB:

> The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

 $\succ \quad \text{if } X_{\alpha} \in \{\mathcal{N}, \mathcal{R}_{\mathcal{S}}, \mathcal{I}_{\mathcal{S}}\}$

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- ▶ if $X_{\alpha} \in \{\mathcal{N}, \mathcal{R}_{S}, \mathcal{I}_{S}\}$ and $0 < |A| \le \aleph_{0}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- $\begin{array}{ll} \succ & \text{if } X_{\alpha} \in \{\mathcal{N}, \mathcal{R}_{\mathcal{S}}, \mathcal{I}_{\mathcal{S}}\} \text{ and } 0 < |\mathcal{A}| \leq \aleph_{0}, \\ & \text{then } \prod_{\alpha \in \mathcal{A}} X_{\alpha} \in \mathsf{LPB}; \end{array}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

➤ if $X \in LPB$,

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のの⊙

→ if $X \in LPB$, then $X \times \mathcal{N} \in LPB$;

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

- ➢ if X∈LPB, then X × N ∈ LPB;
- ▷ if $X_{\alpha} \in LPB$ and $0 < |A| \le \aleph_0$,

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

- ➢ if X∈LPB, then X × N ∈ LPB;
- if X_α ∈ LPB and 0 < |A| ≤ ℵ₀, then ⊕_{α∈A} X_α ∈ LPB;

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

- ➢ if X ∈ LPB, then X × N ∈ LPB;
- if X_α ∈ LPB and 0 < |A| ≤ ℵ₀, then ⊕_{α∈A} X_α ∈ LPB;
- > if **L** is a Luzin π -base for X

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- ➢ if X ∈ LPB, then X × N ∈ LPB;
- if X_α ∈ LPB and 0 < |A| ≤ ℵ₀, then ⊕_{α∈A} X_α ∈ LPB;
- ▶ if **L** is a Luzin π -base for X and $\emptyset \neq A \subseteq$ skeleton **L**,

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- → if $X \in LPB$, then $X \times \mathcal{N} \in LPB$;
- if X_α ∈ LPB and 0 < |A| ≤ ℵ₀, then ⊕_{α∈A} X_α ∈ LPB;
- if L is a Luzin π-base for X and Ø ≠ A ⊆ skeleton L, then $\bigcup_{z \in A} L_z \in LPB$;

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

The following spaces lie in LPB:

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- ➢ if X ∈ LPB, then X × N ∈ LPB;
- if X_α ∈ LPB and 0 < |A| ≤ ℵ₀, then ⊕_{α∈A} X_α ∈ LPB;
- > if **L** is a Luzin π -base for X and $\emptyset \neq A \subseteq$ skeleton **L**, then $\bigcup_{z \in A} \mathbf{L}_z \in \text{LPB}$;

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

➤ if X ∈ LPB

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- → if $X \in LPB$, then $X \times \mathcal{N} \in LPB$;
- if X_α ∈ LPB and 0 < |A| ≤ ℵ₀, then ⊕_{α∈A} X_α ∈ LPB;
- if L is a Luzin π-base for X and Ø ≠ A ⊆ skeleton L, then $\bigcup_{z \in A} L_z \in LPB$;
- ▶ if $X \in LPB$ and $F \subseteq X$ is a σ -compact,

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- ➢ if X∈LPB, then X × N ∈ LPB;

- if L is a Luzin π-base for X and Ø ≠ A ⊆ skeleton L, then $\bigcup_{z \in A} L_z \in LPB$;
- if X∈LPB and F ⊆ X is a σ-compact, then X \ F ∈ LPB

- > The irrational Sorgenfrey line $\mathcal{I}_{\mathcal{S}}$;
- ➢ if X ∈ LPB, then X × N ∈ LPB;
- if X_α ∈ LPB and 0 < |A| ≤ ℵ₀, then ⊕_{α∈A} X_α ∈ LPB;
- if L is a Luzin π-base for X and Ø ≠ A ⊆ skeleton L, then $\bigcup_{z \in A} L_z \in LPB$;
- if X∈LPB and F ⊆ X is a σ-compact, then X \ F ∈ LPB (the proof uses the foliage hybrid operation).

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 - のへで

Definition

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ うへの

Definition

A tree \mathcal{G} a **graft** for a tree $\mathcal{T} : \longleftrightarrow$

Definition

A tree \mathcal{G} a graft for a tree $\mathcal{T} : \longleftrightarrow$ (1) $\mathcal{G} \cap \mathcal{T} = \{\mathbf{0}_{\mathcal{G}}\} \cup \max \mathcal{G}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A tree \mathcal{G} a graft for a tree $\mathcal{T} : \longleftrightarrow$ (1) $\mathcal{G} \cap \mathcal{T} = \{\mathbf{0}_{\mathcal{G}}\} \cup \max \mathcal{G}$ and (2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Definition

A tree \mathcal{G} a graft for a tree $\mathcal{T} : \longleftrightarrow$ (1) $\mathcal{G} \cap \mathcal{T} = \{\mathbf{0}_{\mathcal{G}}\} \cup \max \mathcal{G}$ and (2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$ \bigotimes implant $\mathcal{G} :=$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Definition

```
A tree \mathcal{G} a graft for a tree \mathcal{T} : \longleftrightarrow

(1) \mathcal{G} \cap \mathcal{T} = \{\mathbf{0}_{\mathcal{G}}\} \cup \max \mathcal{G} and

(2) <_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).

\circledast implant \mathcal{G} := \mathcal{G} \smallsetminus \mathcal{T};
```

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Definition

```
A tree \mathcal{G} a graft for a tree \mathcal{T} : \longleftrightarrow

(1) \mathcal{G} \cap \mathcal{T} = \{\mathbf{0}_{\mathcal{G}}\} \cup \max \mathcal{G} and

(2) <_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).

(2) implant \mathcal{G} := \mathcal{G} \smallsetminus \mathcal{T};

(3) explant (\mathcal{T}, \mathcal{G}) :=
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$
 $\stackrel{\text{somegative}}{=} \inf \mathcal{G} \smallsetminus \mathcal{T};$
 $\stackrel{\text{somegative}}{=} explant(\mathcal{T}, \mathcal{G}) := (0_{\mathcal{G}}, +\infty)_{\mathcal{T}}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $\langle_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = \langle_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$
 \cong implant $\mathcal{G} := \mathcal{G} \smallsetminus \mathcal{T};$
 \cong explant $(\mathcal{T}, \mathcal{G}) := (0_{\mathcal{G}}, +\infty)_{\mathcal{T}} \smallsetminus [\max \mathcal{G}, +\infty)_{\mathcal{T}}.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$

$$\mathbb{S}$$
 implant $\mathcal{G} := \mathcal{G} \setminus \mathcal{T};$

・ロト ・ 日本 ・ モト ・ モト ・ モ

590

Definition

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$

$$(\overline{\tau}, 2) \quad (\overline{\tau}, 2)$$

・ロト ・四ト ・ヨト ・ヨト

æ

990

Definition

A family γ of grafts is **consistent** : \longleftrightarrow

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $\langle_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = \langle_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$
 \circledast implant $\mathcal{G} := \mathcal{G} \smallsetminus \mathcal{T};$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ

990

Definition

A family γ of grafts is **consistent** : \longleftrightarrow (3) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$
 \Longrightarrow implant $\mathcal{G} := \mathcal{G} \smallsetminus \mathcal{T}$:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Sac

Definition

A family γ of grafts is **consistent** : \longleftrightarrow (3) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$ [implant $\mathcal{E} \cap \text{implant} \mathcal{G} = \varnothing$]

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$

$$\mathbb{S}$$
 implant $\mathcal{G} := \mathcal{G} \setminus \mathcal{T};$

Definition

A family γ of grafts is **consistent** : \longleftrightarrow (3) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$ [implant $\mathcal{E} \cap$ implant $\mathcal{G} = \emptyset$] and (4) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

æ

Sac

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$

$$\mathbb{S}$$
 implant $\mathcal{G} := \mathcal{G} \setminus \mathcal{T};$

Definition

A family γ of grafts is **consistent** : \longleftrightarrow (3) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$ [implant $\mathcal{E} \cap$ implant $\mathcal{G} = \emptyset$] and (4) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$

イロト 不得 ト イヨト イヨト

æ

Sac

 $\succ 0_{\mathcal{E}} \parallel_{\mathcal{T}} 0_{\mathcal{G}}$

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree \mathcal{T} : \longleftrightarrow
(1) $\mathcal{G} \cap \mathcal{T} = \{\mathbf{0}_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$

$$\mathbb{S}$$
 implant $\mathcal{G} \coloneqq \mathcal{G} \setminus \mathcal{T}$;

Definition

A family γ of grafts is **consistent** : \longleftrightarrow (3) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$ [implant $\mathcal{E} \cap$ implant $\mathcal{G} = \emptyset$] and (4) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$ $\succ \quad 0_{\mathcal{E}} \parallel_{\mathcal{T}} 0_{\mathcal{G}}$ or $\succ \quad 0_{\mathcal{E}} \in [\max \mathcal{G}, +\infty)_{\mathcal{T}}$

Definition

A tree
$$\mathcal{G}$$
 a graft for a tree $\mathcal{T} : \longleftrightarrow$
(1) $\mathcal{G} \cap \mathcal{T} = \{0_{\mathcal{G}}\} \cup \max \mathcal{G}$ and
(2) $<_{\mathcal{G}} \upharpoonright (\mathcal{G} \cap \mathcal{T}) = <_{\mathcal{T}} \upharpoonright (\mathcal{G} \cap \mathcal{T}).$

$$\mathbb{S}$$
 implant $\mathcal{G} := \mathcal{G} \setminus \mathcal{T};$

Definition

A family γ of grafts is **consistent** : \longleftrightarrow (3) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$ [implant $\mathcal{E} \cap$ implant $\mathcal{G} = \emptyset$] and (4) $\forall \mathcal{E} \neq \mathcal{G} \in \gamma$ $\Rightarrow \quad 0_{\mathcal{E}} \parallel_{\mathcal{T}} 0_{\mathcal{G}} \text{ or}$ $\Rightarrow \quad 0_{\mathcal{E}} \in [\max \mathcal{G}, +\infty)_{\mathcal{T}} \text{ or}$ $\Rightarrow \quad 0_{\mathcal{G}} \in [\max \mathcal{E}, +\infty)_{\mathcal{T}}.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 - のへで

Definition

・ロト ・団ト ・ヨト ・ヨト ・ ヨー うへで

Hybrid operation

Definition

 $\mathsf{hybrid}(\mathcal{T},\gamma)$ is

Hybrid operation

Definition

 $\mathsf{hybrid}(\mathcal{T},\gamma)$ is a set $\mathcal H$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$

Hybrid operation

Definition

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

Hybrid operation

Definition

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

$$\succ \mathcal{H} \coloneqq (\mathcal{T} \setminus$$

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

$$\succ \mathcal{H} \coloneqq \left(\mathcal{T} \setminus \bigcup_{\mathcal{G} \in \gamma} \operatorname{explant}(\mathcal{T}, \mathcal{G})\right)$$

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

$$\succ \mathcal{H} \coloneqq \left(\mathcal{T} \setminus \bigcup_{\mathcal{G} \in \gamma} \mathsf{explant}(\mathcal{T}, \mathcal{G})\right) \cup \bigcup_{\mathcal{G} \in \gamma} \mathsf{implant}\mathcal{G}$$

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

$$\mathcal{H} := \left(\mathcal{T} \setminus \bigcup_{\mathcal{G} \in \gamma} \operatorname{explant}(\mathcal{T}, \mathcal{G}) \right) \cup \bigcup_{\mathcal{G} \in \gamma} \operatorname{implant} \mathcal{G} \text{ and}$$
$$\mathcal{F}_{\mathcal{H}} :=$$

Hybrid operation

Definition

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

$$\mathcal{H} := \left(\mathcal{T} \smallsetminus \bigcup_{\mathcal{G} \in \gamma} \mathsf{explant}(\mathcal{T}, \mathcal{G}) \right) \cup \bigcup_{\mathcal{G} \in \gamma} \mathsf{implant}\mathcal{G} \quad \mathsf{and} \\ \mathcal{F} <_{\mathcal{H}} := \mathsf{transitive.closure} \left(<_{\mathcal{T}} \cup \bigcup_{\mathcal{G} \in \gamma} <_{\mathcal{G}} \right).$$

Hybrid operation

Definition

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

$$\mathcal{H} := \left(\mathcal{T} \smallsetminus \bigcup_{\mathcal{G} \in \gamma} \mathsf{explant}(\mathcal{T}, \mathcal{G}) \right) \cup \bigcup_{\mathcal{G} \in \gamma} \mathsf{implant}\mathcal{G} \quad \mathsf{and} \\ \mathcal{F} <_{\mathcal{H}} := \mathsf{transitive.closure} \left(<_{\mathcal{T}} \cup \bigcup_{\mathcal{G} \in \gamma} <_{\mathcal{G}} \right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

hybrid (\mathcal{T}, γ) is a set \mathcal{H} with order $<_{\mathcal{H}}$ such that:

$$\mathcal{H} := \left(\mathcal{T} \smallsetminus \bigcup_{\mathcal{G} \in \gamma} \mathsf{explant}(\mathcal{T}, \mathcal{G}) \right) \cup \bigcup_{\mathcal{G} \in \gamma} \mathsf{implant}\mathcal{G} \quad \mathsf{and} \\ \mathcal{F} <_{\mathcal{H}} := \mathsf{transitive.closure} \left(<_{\mathcal{T}} \cup \bigcup_{\mathcal{G} \in \gamma} <_{\mathcal{G}} \right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

 $\mathsf{hybrid}(\mathcal{T},\gamma)$ is a tree.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

We consider only nonincreasing foliage trees

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Definition

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Definition

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Definition

A foliage tree **G** is a **foliage graft** for a foliage tree **F** : \longleftrightarrow

 \succ skeleton **G** is a graft for skeleton **F**,

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Definition

- \succ skeleton **G** is a graft for skeleton **F**,
- $\succ \ \boldsymbol{G}_{\boldsymbol{0}_{\boldsymbol{G}}} \subseteq \boldsymbol{F}_{\boldsymbol{0}_{\boldsymbol{G}}},$

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

Definition

- > skeleton **G** is a graft for skeleton \mathbf{F} ,
- $\succ \mathbf{G}_{\mathbf{0}_{\mathbf{G}}} \subseteq \mathbf{F}_{\mathbf{0}_{\mathbf{G}}}, \text{ and }$
- ≻ ∀*m*∈max**G**

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

Definition

- \succ skeleton **G** is a graft for skeleton **F**,
- $\succ \mathbf{G}_{\mathbf{0}_{\mathbf{G}}} \subseteq \mathbf{F}_{\mathbf{0}_{\mathbf{G}}}, \text{ and }$
- $▷ \forall m \in \max \mathbf{G} [\mathbf{G}_m = \mathbf{F}_m].$

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Definition

- > skeleton **G** is a graft for skeleton \mathbf{F} ,
- \succ $G_{0_G} \subseteq F_{0_G}$, and
- >> \forall *m* ∈ max **G** [**G**_{*m*} = **F**_{*m*}].
- $\operatorname{sut}(\mathbf{F}, \mathbf{G}) \coloneqq$

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Definition

- \succ skeleton **G** is a graft for skeleton **F**,
- \succ $G_{0_G} \subseteq F_{0_G}$, and
- ≻ $\forall m \in \max \mathbf{G} [\mathbf{G}_m = \mathbf{F}_m].$
- $\texttt{Subscript{Su$

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

Definition

- \succ skeleton **G** is a graft for skeleton **F**,
- \succ $G_{0_G} \subseteq F_{0_G}$, and
- ≻ $\forall m \in \max \mathbf{G} [\mathbf{G}_m = \mathbf{F}_m].$

$$\operatorname{cut}(\mathbf{F},\mathbf{G}) \coloneqq \mathbf{F}_{0_{\mathbf{G}}} \setminus \mathbf{G}_{0_{\mathbf{G}}};$$

$$loss(\mathbf{F}, \gamma) \coloneqq$$

We consider only nonincreasing foliage trees $(w > v \rightarrow \mathbf{F}_w \subseteq \mathbf{F}_v)$.

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

Definition

- > skeleton **G** is a graft for skeleton \mathbf{F} ,
- \succ $G_{0_G} \subseteq F_{0_G}$, and
- $\succ \forall m \in \max \mathbf{G} [\mathbf{G}_m = \mathbf{F}_m].$
- $\operatorname{sut}(\mathbf{F},\mathbf{G}) \coloneqq \mathbf{F}_{\mathbf{0}_{\mathbf{G}}} \setminus \mathbf{G}_{\mathbf{0}_{\mathbf{G}}}$;
- S loss(\mathbf{F}, γ) := $\bigcup \{ \operatorname{cut}(\mathbf{F}, \mathbf{G}) : \mathbf{G} \in \gamma \}.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Definition

- - ▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Definition

$\mathsf{fol.hybrid}(\mathbf{F},\gamma)$ is

Definition fol.hybrid(**F**, γ) is a foliage tree **H** such that ➤ skeleton **H** :=

Definition

fol.hybrid (\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

> skeleton $\mathbf{H} := \text{hybrid}(\text{skeleton } \mathbf{F}, \{\text{skeleton } \mathbf{G} : \mathbf{G} \in \gamma\})$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Definition

fol.hybrid (\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

> skeleton $\mathbf{H} := \text{hybrid}(\text{skeleton } \mathbf{F}, \{\text{skeleton } \mathbf{G} : \mathbf{G} \in \gamma\})$ and

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

> **H**_v :=

Definition

fol.hybrid(\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$\begin{aligned} &\succ \quad \text{skeleton} \, \mathbf{H} \coloneqq \text{hybrid} \left(\text{skeleton} \, \mathbf{F}, \{ \text{skeleton} \, \mathbf{G} \in \gamma \} \right) \quad \text{and} \\ &\succ \quad \mathbf{H}_{v} \coloneqq \begin{cases} \mathbf{F}_{v} \smallsetminus \text{loss}(\mathbf{F}, \gamma), \\ \end{cases} \end{aligned}$$

Definition

fol.hybrid(\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and$$

$$> H_{\nu} := \begin{cases} F_{\nu} \setminus loss(F, \gamma), & \text{if } \nu \in skeleton F; \end{cases}$$

Definition

fol.hybrid(\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$\begin{split} & \succ \quad \text{skeleton} \, \mathbf{H} \coloneqq \text{hybrid} \left(\text{skeleton} \, \mathbf{F}, \{ \text{skeleton} \, \mathbf{G} \colon \mathbf{G} \in \gamma \} \right) \quad \text{and} \\ & \searrow \quad \mathbf{H}_{\nu} \coloneqq \left\{ \begin{aligned} & \mathbf{F}_{\nu} \smallsetminus \text{loss}(\mathbf{F}, \gamma), & \text{if } \nu \in \text{skeleton} \, \mathbf{F}; \\ & \mathbf{G}_{\nu} \smallsetminus \text{loss}(\mathbf{F}, \gamma) \end{aligned} \right.$$

Definition

fol.hybrid(\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and > H_v := \begin{cases} F_v \setminus loss(F, \gamma), & \text{if } v \in skeleton F; \\ G_v \setminus loss(F, \gamma), & \text{if } v \in skeleton G (for some G \in \gamma). \end{cases}$$

Definition

fol.hybrid (\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and > H_v := \begin{cases} F_v \setminus loss(F, \gamma), & \text{if } v \in skeleton F; \\ G_v \setminus loss(F, \gamma), & \text{if } v \in skeleton G (for some G \in \gamma) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Definition

fol.hybrid (\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and > H_v := \begin{cases} F_v \setminus loss(F, \gamma), & \text{if } v \in skeleton F; \\ G_v \setminus loss(F, \gamma), & \text{if } v \in skeleton G (for some G \in \gamma) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

> If **F** and each $\mathbf{G} \in \gamma$ are locally strict,

Definition

fol.hybrid ($\mathbf{F},\gamma)$ is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and > H_{v} := \begin{cases} F_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton F; \\ G_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton G (for some G \in \gamma). \end{cases}$$

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

Proposition

> If **F** and each **G** $\in \gamma$ are locally strict, then fol.hybrid(**F**, γ) is locally strict.

Definition

fol.hybrid ($\mathbf{F},\gamma)$ is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and > H_{v} := \begin{cases} F_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton F; \\ G_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton G (for some G \in \gamma). \end{cases}$$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

- > If **F** and each **G** $\in \gamma$ are locally strict, then fol.hybrid(**F**, γ) is locally strict.
- If F has strict branches and splittable

Definition

fol.hybrid (\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and > H_{v} := \begin{cases} F_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton F; \\ G_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton G (for some G \in \gamma). \end{cases}$$

イロト 不得 とうほう 不良 とうせい

200

- > If **F** and each $\mathbf{G} \in \gamma$ are locally strict, then fol.hybrid(\mathbf{F}, γ) is locally strict.
- If F has strict branches and splittable, and if each G ∈ γ has bounded chains,

Definition

fol.hybrid (\mathbf{F}, γ) is a foliage tree \mathbf{H} such that

$$> skeleton H := hybrid(skeleton F, \{skeleton G : G \in \gamma\}) and$$

$$> H_{v} := \begin{cases} F_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton F; \\ G_{v} \setminus loss(F, \gamma), & \text{if } v \in skeleton G (for some G \in \gamma). \end{cases}$$

- > If **F** and each $\mathbf{G} \in \gamma$ are locally strict, then fol.hybrid(\mathbf{F}, γ) is locally strict.
- If F has strict branches and splittable, and if each G ∈ γ has bounded chains, then fol.hybrid(F, γ) has strict branches.

Let **L** be a Luzin π -base for X

Let **L** be a Luzin π -base for X and let $Y \subseteq X$:

Let **L** be a Luzin π -base for X and let $Y \subseteq X$:

(1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

4 ロト 4 団 ト 4 三 ト 4 三 ト 9 へ ()

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

(2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

(2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

A foliage graft **G** preserves shoots of L $: \longleftrightarrow$

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

(2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

A foliage graft **G preserves shoots** of **L** : \longleftrightarrow $\forall p \in X$

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

(2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

A foliage graft **G** preserves shoots of **L** : \longleftrightarrow $\forall p \in X \ \forall w \in explant(\mathbf{L}, \mathbf{G}) \text{ s.t.}$

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

(2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

```
A foliage graft G preserves shoots of L :\longleftrightarrow
\forall p \in X \ \forall w \in explant(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p
```

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?
- (2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

```
A foliage graft G preserves shoots of L :\longleftrightarrow
\forall p \in X \ \forall w \in explant(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p
\exists v \in implant \mathbf{G}
```

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

(2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

```
A foliage graft G preserves shoots of L :\longleftrightarrow
\forall p \in X \ \forall w \in explant(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p
\exists v \in implant \mathbf{G} \left[ \mathbf{G}_v \ni p \right]
```

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?
- (2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

A foliage graft **G** preserves shoots of **L** : \leftrightarrow $\forall p \in X \ \forall w \in \text{explant}(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p$ $\exists v \in \text{implant} \mathbf{G} \left[\mathbf{G}_v \ni p \text{ and } \text{shoot}_{\mathbf{G}}(v) \gg \text{shoot}_{\mathbf{L}}(w) \right].$

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?
- (2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

```
A foliage graft G preserves shoots of L :\leftrightarrow
\forall p \in X \ \forall w \in \text{explant}(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p
\exists v \in \text{implant} \mathbf{G} \left[ \mathbf{G}_v \ni p \text{ and } \text{shoot}_{\mathbf{G}}(v) \gg \text{shoot}_{\mathbf{L}}(w) \right].
```

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?
- (2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

```
A foliage graft G preserves shoots of L :\leftrightarrow
\forall p \in X \ \forall w \in \text{explant}(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p
\exists v \in \text{implant} \mathbf{G} \left[ \mathbf{G}_v \ni p \text{ and } \text{shoot}_{\mathbf{G}}(v) \gg \text{shoot}_{\mathbf{L}}(w) \right].
```

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

Proposition

If **L** grows into X

- Let **L** be a Luzin π -base for X and let $Y \subseteq X$:
- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?
- (2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

```
A foliage graft G preserves shoots of L :\leftrightarrow
\forall p \in X \ \forall w \in \text{explant}(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p
\exists v \in \text{implant} \mathbf{G} \left[ \mathbf{G}_v \ni p \text{ and } \text{shoot}_{\mathbf{G}}(v) \gg \text{shoot}_{\mathbf{L}}(w) \right].
```

Proposition

If L grows into X and each $\mathbf{G} \in \gamma$ preserves shoots of L,

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

Let **L** be a Luzin π -base for X and let $Y \subseteq X$:

- (1) When the fol.hybrid (\mathbf{L}, γ) is a Baire foliage tree on Y?
- (2) When the fol.hybrid (\mathbf{L}, γ) grows into Y?

Definition

A foliage graft **G** preserves shoots of **L** : \longleftrightarrow $\forall p \in X \ \forall w \in explant(\mathbf{L}, \mathbf{G}) \text{ s.t. } \mathbf{L}_w \ni p$ $\exists v \in implant \mathbf{G} \left[\mathbf{G}_v \ni p \text{ and } \operatorname{shoot}_{\mathbf{G}}(v) \gg \operatorname{shoot}_{\mathbf{L}}(w) \right].$

Proposition

If **L** grows into X and each $\mathbf{G} \in \gamma$ preserves shoots of **L**, then fol.hybrid(\mathbf{L}, γ) grows into $X \setminus loss(\mathbf{L}, \gamma)$.

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

M. Patrakeev, The complement of a σ -compact subset of a space with a Luzin π -base also has a Luzin π -base, preprint. http://arxiv.org/abs/1512.02458

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Thank you!